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Optimal Estimation of Jacobian and Hessian Matrices 
That Arise in Finite Difference Calculations 

By D. Goldfarb* and Ph. L. Toint 

Abstract. In this paper, the problem of estimating Jacobian and Hessian matrices arising in 
the finite difference approximation of partial differential equations is considered. Using the 
notion of computational molecule or stencil, schemes are developed that require the minimum 
number of differences to estimate these matrices. A procedure applicable to more complicated 
structures is also given. 

1. Introduction. In the past few years, there has been a growing interest in studying 
efficient ways to obtain good estimates of sparse Jacobian or Hessian matrices. Two 
basic approaches have been followed. In the first approach, it is assumed that one 
has an estimate of the Jacobian (Hessian) which one wishes to revise given "arbi- 
trary" changes in the variables and the corresponding changes in the functions 
(gradients). This has led to the development of several sparse quasi-Newton methods 
(see [11], [14], [12], for example). In the second approach, it is assumed that one can 
specify the changes in the variables. One then forms an estimate of the Jacobian 
(Hessian) matrix from the observed changes in the functions (gradients). When the 
dimension of the matrix is large and the evaluation of each function (gradient) 
vector is expensive, it is necessary to take the sparsity structure of the matrix into 
account, in order to make this approach efficient. Several methods for doing this for 
arbitrary sparsity structures have already appeared in the literature [2]-[5], [7]-[10], 
[13]. 

In this paper, we consider the second approach for cases where the sparsity 
structure arises from finite difference approximations to partial differential equa- 
tions. Both symmetric and unsymmetric matrices are considered. Although the 
algorithms presented do not generalize to every pattern generated by finite dif- 
ferences, they cover the most useful structures, and, in some cases, extend existing 
methods to more complex situations. 

In the next section, we describe the method of Curtis, Powell and Reid [5], 
henceforth referred to as the CPR method, for estimating sparse Jacobian matrices. 
We then show how the so-called "computational molecule" or "stencil" [1] of the 
finite difference operator associated with the Jacobian matrix under study can be 
used to determine the groupings (i.e. function differencing directions) used by the 
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CPR method. This allows sparse Jacobians of the kind considered in this paper to be 
estimated with a minimum number of function vector differences. In Section 3, we 
describe the Lower Triangular Substitution (LTS) method of Powell and Toint [10] 
for estimating sparse Hessian matrices. Analogously to what is done in Section 2, the 
computational molecule is used to develop optimal estimation schemes. Section 4 
presents a tearing procedure which is applicable when the LTS method is used on 
more complicated structures. Finally, some concluding remarks are offered in 
Section 5. 

2. Computational Molecules and Estimation of Sparse Jacobian Matrices. We now 
consider the problem of estimating the Jacobian matrix J(.) of some differentiable 
function g(*) from Rn into Rn at some point x of interest. We also assume that we 
know the sparsity pattern of J(*) a priori. In order to obtain an estimate of J(x); we 
compute the value of g( ) at x and at some other points x + Sk. To achieve this 
using as few Sk as possible, we must make use of our knowledge of the sparsity 
pattern of J(x). We finally assume that we can only compute full function vectors 
and not any part of them separately. Each element of the Jacobian matrix J(x) is, in 
general, a nonlinear function of x. When the function g(-) is linear, J(x) is a 
constant matrix J. Since J(x) has the same sparsity pattern whether g(x) is linear or 
not, we shall henceforth refer to J(x) simply as J. 

Curtis, Powell and Reid [5] were the first to point out that the number of 
evaluations of g( ) needed to estimate J could be reduced by taking advantage of the 
sparsity pattern of J. Their idea was to form groups of columns of J that could be 
estimated together, using only one function difference. This requires that the 
columns belonging to the same group have all their nonzero elements on different 
rows. Any group of columns of J will be called CPR valid if and only if this criterion 
is met. The difference related to that group is then taken along the direction formed 
by adding together suitable multiples of the canonical basis vectors that correspond 
to the columns in the group. 

For example, let us consider the 4 x 4 pattern 

* * 

* * * 
(1) 

~~~* * * 

* * 

The first and fourth columns form a CPR valid group, since they have their nonzero 
elements in different rows (1, 2 and 3, 4); hence they can be both estimated by using 
a difference along the direction 

(2) s, = h1e, + h4e4, 

where { e, i = 1, 2, 3, 4} is the canonical basis of R4. Columns 2 and 3 each form a 
separate group since each has at least one nonzero in a row in common with every 
other column. Estimation of these columns therefore requires two more differences. 
Thus applying the CPR method to the Jacobian (1) allows it to be estimated in three 
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differences instead of four. It is also quite easy to verify that the maximum number 
of nonzero elements on a single row is a lower bound on the number of groups, and 
hence of differences, that will be needed to estimate a particular sparse Jacobian 
matrix. Moreover Newsam and Ramsdell [9] have shown that it is always possible 
(mathematically) to estimate a Jacobian matrix in this number of differences. 

In [5], Curtis, Powell and Reid proposed forming groups by considering succes- 
sively the columns of J in their natural order. Unfortunately, this procedure does not 
produce a minimal number of groups on most Jacobian structures arising in finite 
difference calculations. More recently, Coleman and More [2] further discussed the 
ordering in which the columns should be considered, in order to minimize the 
number of groups. They showed that, for a general sparse pattern, the problem is 
equivalent to a certain coloring problem on a suitable graph, and proposed the use 
of graph coloring algorithms to obtain a small number of groups. But these methods 
still do not yield the minimum number of groups on all sparsity patterns that are 
encountered in finite difference problems, as observed by the authors themselves. 

We now develop another way to gather the columns of the pattern in suitable 
groups, when we are dealing with a finite difference approximation of a partial 
differential equation problem. The resulting algorithms will achieve the minimum 
number of groups needed to estimate the Jacobian in our framework. 

The sparsity pattern of J associated with a finite difference approximation to a 
partial differential equation problem is completely determined by the "computa- 
tional molecule" or "stencil" of the finite difference operator, the ordering of the 
components of x (i.e. the numbering of the mesh points) and the given boundary 
conditions. For the moment we will consider only Dirichlet boundary conditions. 

J+M 

J- I J+1 

J-M 

FIGURE 2-1 

The computational molecule for the five-point 
finite difference Laplace operator 
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Such conditions essentially have no effect on the sparsity pattern of J. In Section 4, 
we will discuss techniques for handling cases where the boundary conditions affect 
this pattern. Further, we observe that although the ordering of the components of x 
affects the sparsity pattern, it does not affect the essential sparsity structure of J; e.g. 
permuting the rows and columns with J does not change the intersection graph 
associated to J aside from the labels assigned to nodes of this graph. This associated 
graph has vertices {1, 2,. . ., n } corresponding to the column indices of J, and edges 
(i, j) if i = j and columns i and j have a nonzero in the same row. 

Since the CPR method depends only upon the essential sparsity structure of J, we 
need only consider the computational molecule of the finite difference operator to 
form CPR valid groups. To illustrate this, consider the two-dimensional five-point 
Laplacian operator applied to a rectangular region with m x k mesh numbered in 
the standard way (see Figure 2-1). The points that are covered by the molecule 
centered at the jth mesh point are those with indices j - m, j - 1, j, j + 1, j + m; 
consequently, the only nonzero elements in the jth row (column) of J occur in 
columns (rows)j - m, j - 1, j, j + 1 andj + m. 

Partitioning the columns of J into a minimal number of groups suitable for the 
CPR algorithm now becomes a simple task, given the molecule. In the particular 
case at hand, we completely cover all mesh points by disjoint molecules as shown in 
Figure 2-2 to determine one of the groups. This group consists of those columns 
corresponding to the centers of the molecules of this cover. This is clearly a CPR 
valid group, since all the molecules used to form the cover are disjoint. 

The other groups in the partition of the columns of J are obtained by shifting this 
cover of molecules respectively one line up, one line left, one line right and one line 

1 ~~~~~~~~X 

FIGum 2-2 
Cover of the finite difference mesh 

by the computational molecules 
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down. One can also view the formation of a new group as the gathering of all 
columns whose indices are those of variables occupying the same position in every 
molecule of the cover. In the case of an m x n mesh numbered in the standard way, 
the five groups determined by the above approach are 

Gp = {i + m(j - 1)1 < i < m, 1 j < n, (i + 3j) mod5 =p} 

forp = 0,1,2,3,4. 
Five groups is clearly the minimum number required by the CPR method in this 

example, since the maximum number of nonzero elements in a row of the sparsity 
pattern is five. This provides a new justification of a method described in [8] for this 
particular case. 

It should also be clear that this approach is not restricted to rectangular regions, 
but can be applied as well to nonrectangular ones, with all sorts of holes and odd 
shapes. 

Minimum cardinality partitions of the columns of J are also given below for some 
other common two-dimensional computational molecules. 

A 3-diagonal Jacobian. The 3 groups corresponding to the cover in Figure 2-3 for 
an m x n mesh are 

Gp = {i + m(j -1)11 < i < m, 1 j < n, (i + 2j)mod3 =p} 

forp = 0,1,2. 
A 7-diagonal Jacobian. The 7 groups corresponding to the cover in Figure 2-4 for 

an m x n mesh are 

Gp = { i + m (j - 1|1< i< m, 1 j n, (i+ 4j) mod 7 =p} 

forp =0,1,...,6. 

FIGuRE 2-3 
Stencil and cover for a 3-diagonal Jacobian 
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A 9-diagonal Jacobian. The 9 groups corresponding to the cover in Figure 2-5 for 
an m x n mesh are 

Gp= {i + m(j -1)<11 i < m,1 <j < n, (i + 6j) mod9 =p} 

forp =0,1,...,8. 

FIGum 2-4 
Stencil and cover for a 7-diazgonal Jacobian 

I I gF 

FIGURE 2-5 
Stencil and cover for a 9-diagonal Jacobian 
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An 11-diagonal Jacobian. The 11 groups corresponding to the cover in Figure 2-6 
for an m X n mesh are 

Gp= {i + m(] - 1)11 i < m, 1 < j < n, (i + 7j) modl = p} 

forp =01,...,10. 

FIGuRE 2-6 
Stencil and cover for an 1 1-diagonal Jacobian 

FIGURE 2-7 
Stencil and cover for a 13-diagonal Jacobian 
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A 13-diagonal Jacobian. The 13 groups corresponding to the cover in Figure 2-7 
for an m x n mesh are 

GP = {i + m(j-) |1 < i < m, 1 j < n, (i + 5j)modl3 =p} 

forp = 0,1,.. .,12. 
Each of the above partitions is a minimum cardinality partition** of the columns 

of J in that the number of groups equals the number of mesh points covered by the 
computational molecule, i.e. the number of nonzero diagonals in the sparsity pattern 
of J. Observe, however, that in all of the above cases, there are other minimum 
cardinality partitions besides those that are given. 

Although the above list covers most of the useful ones, the method we propose 
does not extend to all possible stencils in the discretized plane. Indeed, to be able to 
apply the procedure, we must build a cover of the mesh using the disjoint molecules, 
and this is not possible for all molecules. For example, the molecule corresponding 
to the 9-point Laplacian operator, covering mesh points j - 2m, j - m, j - 2, j - 1, 
j, j + ,] j + 2,j + m,j + 2m, cannot be used for such a cover. 

It is easy to prove that the placement of disjoint molecules shown in Figure 2-8 is 
the closest that one can get to a covering of the mesh points. This figure also shows 
that ten groups suffice for this Jacobian, since the nine-point stencil centered at 
mesh point j, augmented by the tenth-point m + m + 2, forms a cover. These 
additional points are indicated by circles in the figure. 

The ten groups formed in this manner for an m x n mesh are 

Gp = {i + m(j- 1)11 < i < i, 1 sj < n, (i + 3j)modl = p} 

forp = 0,1,...,9. 

V, r H d? 

FIGuE 2-8 
Stencil for the 9-point Laplacian operator 

** Minimum cardinality partitions have also been given for the five-diagonal and the nine-diagonal 
Jacobian by Newsam and Ramsdell [91, who observed independently that such partitions could be easily 
found by considering the stencil associated with the Jacobian. 
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FIGURE 2-9 
One horizontal layer of the covering 

for the 3-dimensional 7-point Laplacian 

Our approach can also be extended to 3-dimensional meshes, if we can find a 
suitable covering of this space with the 3-dimensional stencils defined by the 
operator. This problem is more difficult than the 2-dimensional case, but not 
hopeless, as shown by the following example. We consider again the Laplacian 
operator on an m x n x q mesh, and the computational molecule covering mesh 
pointsj - nm,j - m,j - 1,j,j + 1,j + m andj + nm. This is the natural extension 
to 3 dimensions of the 5-point operator analyzed above. This molecule can be viewed 
as a cube standing on one of its corners. It is not difficult to see that the cover of 
Figure 2-9 is adequate, where the slice of the mesh shown is horizontal, and where a 
small circle represents the bottom corner of the stencil, a large diamond its section at 
mid-height and a small square its top corner. When moving one layer up, this cover 
is simply shifted two positions right and one down. 

The seven groups associated with this covering for an m x n x q mesh are 

P= {i + mi(j - 1) + mn(k - 1) 11 i m m, 1 <]j < n, 1 < k < q, 

(i + 5] + 3k)mod7 =p} 

forp = O, 1, ... ,6. 
A similar extension to 3 dimensions is also clearly possible for the 2-dimensional 

9-point operator, whose extended computational molecule is now a cube standing on 
one of its faces. 

3. Estimation of Sparse Hessian Matrices. We now turn to the case where our 
function g(*) is in fact a gradient, and can be expressed as 

(3) g(x) = H(x)x + b(x), 
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where the elements of H(x) and b(x) are nonlinear functions of x. As above, the 
structure of H(x) is identical to that of the constant H that would be obtained in the 
linear case, and this structure is induced by the computational molecule of the given 
underlying operator. The problem we face is nevertheless different, because we want 
to use the inherent symmetry of H to reduce the number of groups (and the number 
of needed differences) even further. This can be accomplished by using an extension 
of the CPR method to the symmetric case: the LTS method proposed by Powell and 
Toint in [10]. 

Let us briefly recall how the LTS (Lower Triangular Substitution) procedure 
works. Instead of considering the whole sparsity pattern to form CPR valid groups 
of columns, this method only considers its lower-triangular part. In [10], Powell and 
Toint propose a general ordering procedure for the columns of this reduced pattern, 
and they show that it is possible using one direction for each group to obtain an 
estimate of the whole Hessian matrix by taking differences in g(*) along directions 
corresponding to these groups. This procedure involves an algebraic substitution, 
hence the name. 

Consider again, for illustration purposes, the 4 x 4 pattern of (1), and assume 
now symmetry of the corresponding matrix. Applying the CPR method to the 
lower-triangular part of this pattern yields two groups, namely 

(4) G= {1,3} and G2 ={2,4}. 

Using the directions 

(5) Si = h1e, + h3e3 and s2 = h2e2 + h4e4 

corresponding to these groups yields the following equations for determining H: 

Hllh= Y1, H12h2 =Zl 

(6) H21h, + H23h3 = Y2, H22h2 = Z29 

H33h3 =Y3, H32h2 + H34h4 = Z39 

H43 h3= y4, H44h4 = Z49 

where 

(7) y = g(x + s1) - g(x) and z = g(x + S2) - g(x). 

It is now obvious that all entries of H can be determined, starting from the last row 
and working upwards by taking symmetry of H into account. More details and some 
error bounds can be found in [10]. 

Returning to our computational molecules, we now see that only the part of the 
molecule that determines the pattern in the lower-triangular part of H is relevant to 
the LTS method. This is the part of the molecule covering mesh points with indices 
larger than that of its center. We refer to these partial molecules as "forward 
computational molecules" for this reason. If we consider once more the 5-point 
2-dimensional Laplacian operator applied on a rectangular m x n mesh numbered 
in the standard way, its forward molecule is now a triangle covering mesh pointsj, 
j + 1 andj + m, as shown in Figure 3-1. 
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A suitable covering of the mesh can now be constructed as shown in Figure 3-2, 
and the three resulting groups will be 

Gp = { i + m(j - 1 i< m, 1j < n, (i+ 2j) mod 3 =p} 

for p = ,1, 2. 

J- 1 J+ 1 

J-m 

FIGuRE 3-1 
The forward molecule for the five-point 
Laplacian operator in two dimensions 

FIGuL 3-2 
Cover for a 5 -diagonal Hessian 
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This simple example provides a generalization of the algorithm of [8] to the 
symmetric case, and the partition clearly has minimum cardinality. Again, this 
technique can be very easily applied on nonrectangular regions with or without 
holes. 

FIGuRE 3-3 
Forward molecule and cover for a 3-diagonal Hessian 

FIGuRE 3-4 
Forward molecule and cover for a 7-diagonal Hessian 
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As in the previous section, we give the forward molecules and covers for some 
other common 2-dimensional operators in Figures 3-3-3-7. 

Each of these coverings results in a number of groups equal to the number of 
diagonals in the lower-triangular part of the Hessian matrix (2, 4, 5, 6 and 7 
respectively), and hence, is minimum. 

FI E __ 3-5 
Forward molecule and cover for a 9-diagonal Hessian _!- T - I - ___ 

FIGURE 3-6 
Forward molecule and cover for an 11-diagonal Hessian 
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Observe that, in some cases, the fact that the forward molecule differs in shape 
from the molecule itself may be important. For example, it is now possible to use the 
forward molecule associated with the 9-point Laplacian operator (a kind of L) to 
cover the 2-dimensional region, and hence to estimate the corresponding Hessian 

FIGuRE 3-7 

Forward molecule and cover for a 13-diagonal Hessian 

FIGURE 3-8 
Forward molecule and cover for the 9-point Laplacian operator 
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*i 
_ 
-K Y- E__% 

L N 

FIGuRE 3-9 
One horizontal layer of the forward covering 

for the 3-dimensional 7-point Laplacian 

matrix with 5 differences (see Figure 3-8). As shown above, it was impossible to use 
that operator in the manner proposed in the unsymmetric case. 

As in the unsymmetric case, extension to 3-dimensional problems is sometimes 
possible, provided the new 3-dimensional forward molecule can be used to cover the 
3-dimensional mesh. As an example, we consider again the extension of the 5-point 
Laplacian operator to 3 dimensions: the corresponding Hessian matrix now has 7 
diagonals. The forward molecule associated with this operator is a tetrahedron which 
can be used to cover the mesh, as shown in Figure 3-9. 

In this figure, the triangles represent the bases of the forward molecules, while the 
small squares stand for the -top corners. When moving one layer up, the same pattern 
is reproduced shifted one position down and one position left. This means that it is 
possible to estimate the Hessian matrix corresponding to the 3-dimensional 7-point 
Laplacian operator with the minimal number of 4 differences in g(-), using an LTS 
procedure. 

4. A Tearing Procedure for More Complicated Structures. In this section, we 
investigate a procedure that is useful when dealing with more complicated Hessian 
structures. This procedure applies to several different cases, but will be motivated 
and analyzed on the following example. Consider the problem where the Laplacian 
operator is applied on a 2-dimensional rectangular region with periodic boundary 
conditions on the vertical sides of the region. Then a block-tridiagonal matrix results 
in which the diagonal blocks are tridiagonal except for nonzero elements in the 
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upper right and lower left corners, and the off-diagonal blocks are diagonal. Such a 
pattern is as follows: 

* * * * 

* * * * 

* * * * 

* * * * 

* * * * 

* * * * 

* * * * * 

* * * * * 

* * * * * 

* * * * * 

* * * * * 

* * * * * 

* * * * 

* * * * 

* * * * 

* * * * 

* * * * 

* * * * 

The forward molecule approach, while still feasible in this case, becomes more 
complicated by the fact that the "forward" molecule is no longer the same at all 
mesh points. Indeed, it will be different on the left periodic boundary, in the center 
of the region and on the right periodic boundary. We therefore would like to develop 
an alternative approach for cases like this one. 

Assume now that we apply the forward molecule approach of the previous section, 
without taking the troublesome elements (6,1), (12,7) and (18,13) into account. We 
can then obtain a covering of the region as in Figure 3-2, and we need 3 groups: 

Gi = {1,4,8,11,15,18}, G2 = {2,5,9,12,13,16} 
and G3 = {3,6, 7, 10, 14, 17). 

If we now consider the elements that were disregarded, we can observe that they 
appear in rows already occupied in their column's group. For example, element 
(12,7) conflicts with element (12,6): columns 6 and 7 both belong to the same group. 

The idea is to build a supplementary difference direction that will allow us to 
resolve these conflicts where they occur. In this particular example, we will choose a 
direction of the form 

(8) (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,0, 0, 0, 0, 0, 0) 

It is quite clear now that only one of the two conflicting elements will play any role 
in the difference along this direction. 

We may now estimate row after row, starting from the last up to the first, in the 
usual LTS fashion. If the row under consideration has two conflicting elements, we 
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first estimate all other elements of the row, then use the supplementary direction and 
these values to substitute for one of the conflicting elements, and finally substitute 
for the other, using the direction associated with its LTS group. 

The method used in this simple example can be formulated as a general algorithm 
as follows. Assume that, for some reason, we wish to use certain predefined column 
groups in our estimation procedure. In general, we cannot assume that these groups 
will be CPR valid, and hence some rows will contain different nonzero elements 
belonging to columns in the same group. Let S(i, k) be defined as the set of 
elements with row index i in a columnj in group k, wherej < i; i.e. 

(9) S(i,k) = {(i,j) Ij < i,Hij # O and k(j) =k, 

where k(j) is the group number of columnj in our a priori grouping. If for some i, 
the set S(i, k) contains more than one element, then group k is not CPR valid and 
we need more information to estimate the elements in S(i, k). 

Consider now the set S of elements contained in the sets S(i, k) with cardinality 
greater than one, and the set C of columns corresponding to the elements in S; i.e. 

S = {(i, I) (i, j) E S(i, k) and card[S(i, k)] > 1 for some k} 

and 

C= j I(i j) E-S). 

The idea is then to construct a new CPR grouping for these columns, considered 
in their natural order. In this grouping, we shall take into account the fact that some 
information is already available through the a priori groups and differences. 

The grouping algorithm we propose can now be described. 

1. Form the set C. Let M(S) be the matrix whose nonzeros are indexed by S. 
2. If C is empty, stop. Otherwise, form a CPR valid group by considering -the 

nonzero columns of M(S). 
3. Delete from C the indices of all columns belonging to the group just formed, 

and all corresponding elements from S and their respective sets S(i, k). 
4. If any set S(i, k) reduces to a single element (i, j), delete that element from S. 

Further, if columnj of M(S) becomes all zeros, deletej from C. 
5. Go to step 2. 

Step 4 of the algorithm clearly uses the fact that the a priori group k provides 
enough information to estimate one of the elements of S(i, k) once the others are 
known. 

The usual LTS substitution procedure for a particular row is now modified as 
follows. 

1. Substitute for all elements that are the only members of their group in that row. 
2. If all the elements of the row have been computed, consider the next row. 
3. Else, 

a. choose k such that S(i, k) contains more than one element, where i is the 
current row number. 

b. Find a supplementary group that contains, in the ith row, only one of 
these elements, and use that group to substitute for that particular element. 
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c. If, for some k, S(i, k) contains more than one element, go back to a. 
d. Substitute for the remaining unknown elements of the row, by using the a 

priori groups. 

In the example above, one can easily see that S contains only elements (12,6), 
(12,7), (18, 12), and (18,13), and 

C= {6,7,12,13}. 

The only supplementary group will then gather columns 6 and 12, and the resulting 
direction will be given by (8). 

This general method can be easily applied to more complicated structures. For 
example, we could consider our periodic problem where the Laplacian is replaced by 
the biharmonic operator, and the a priori grouping given by the covering of Figure 
3-7. Another interesting case is the estimation of an outlying diagonal around a 
central band pattern: the algorithm proposed in [15] is the particularization of the 
method just proposed to that type of structure. 

Clearly, once the lower-triangular pattern is fixed, the ordering in the new 
procedure must be the natural one. However, the user is free to consider any 
permutation of the full columns of the Hessian matrix, so that the resulting structure 
M(S) can be covered with as few CPR groups as possible. This obviously depends 
on the a priori grouping itself, and is problem dependent. One may attempt to 
choose the a priori groups in a way to optimize, in a certain sense, the resulting 
S(i, k) in the lower-triangular pattern M(S). 

Observe also that the proposed procedure is not, strictly speaking, an LTS 
method. Indeed, the groups that are formed on the lower-triangular part of the 
considered pattern are not CPR valid. 

5. Concluding Remarks. Our approach to determining minimum cardinality parti- 
tions of the columns of Jacobian and Hessian matrices that are, respectively, CPR 
and LTS valid was based upon covering the finite difference mesh with disjoint (full 
and forward) computational molecules. It should be evident that in the two-dimen- 
sional case, this is equivalent to the problem of "tiling" the plane with these 
molecules, allowing translations only. We could have characterized the molecules as 
" polyominoes" [6], which are simply connected squares joined along their edges. For 
example, the computational molecule for the five-point Laplacian operator can be 
represented by the "pentomino" shown in Figure 5-1. 

Thus our approach in the two-dimensional cases corresponded to finding a tiling 
of the plane by translations of a given polyomino. 

It is worth mentioning that the partitions obtained in this paper may be of some 
use when parallelizing such algorithms as the Gauss-Seidel and SOR algorithms for 
solving systems of linear equations that arise from finite difference approximations 
to partial differential equations. 

It should also be pointed out that the tearing approach of Section 4 can be used 
for unsymmetric as well as symmetric matrices. However, if this is done, we obtain a 
"substitution" method as opposed to a "direct" CPR like method. 
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__ __ __ ___ __ 

FIGuRE~ 5-1 
Pentomino for the 5-point Laplacian operator 

6. Acknowledgements. It is a pleasure to acknowledge Tom Coleman's interest in 
the early developments of the ideas presented here. A discussion of the problem with 
M. J. D. Powell was also, as usual, very helpful. 
Department of Industrial Engineering and Operations Research 
Columbia University 
New York, New York 10027 

Department of Mathematics 
Facult~s Universitaires de Namur 
Namur, Belgium 

1. W. G. BICKLEY, "Finite difference formulae for the square lattice," Quart. J. Mech. Appl. Math., v. 
1, 1948, pp. 35-42. 

2. T. F. COLEMAN & J. J. MoRi, "Estimation of sparse Jacobian matrices and graph coloring 
problems," SIA M J. Numer. Anal., v. 20, 1983, pp. 187-209. 

3. T. F. COLEMAN & J. J. MoRi, Software for Estimating Sparse Jacobian Matrices, Technical Report 
ANL-82-37, Argonne National Laboratory, Argonne, Illinois, 1982. 

4. T. F. COLEMAN & J. J. MoRi, Estimation of Sparse Hessian Matrices and Graph Colouring Problems, 
Technical Report ANL-81-535, Argonne National Laboratory, Argonne, Illinois, 1982. 

5. A. CURTIS, M. J. D. POWELL & J. REID, "On the estimation of sparse Jacobian matrices," J. Inst. 
Math. Appl., v. 13, 1974, pp. 117-119. 

6. S. W. GOLOMB, Polyominoes, Chas. Schribner's Sons, New York, 1965. 
7. S. T. MCCORMICK, "Optimal approximation of sparse Hessians and its equivalence to a graph 

coloring problem," Math. Programming, v. 26, 1983, pp. 153-171. 
8. D. K. MELGAARD & R. F. SINCOVEC, "General software for two-dimensional nonlinear partial 

differential equations," A CM Trans. Math. Software, v. 7, 1981, pp. 106-125. 
9. G. N. NEWSAM & J. D. RAMSDELL, "Estimation of sparse Jacobian matrices," SIAM J. Algebraic 

Discrete Methods, v. 4, 1983, pp. 404-418. 
10. M. J. D. POWELL & PH. L. TOINT, "On the estimation of sparse Hessian matrices," SIAM J. 

Numer. Anal., v. 16, 1979, pp. 1060-1074. 



88 D. GOLDFARB AND PH. L. TOINT 

11. L. K. SCHUBERT, "Modification of a quasi-Newton method for nonlinear equations with a sparse 
Jacobian," Math. Comp., v. 24, 1970, pp. 27-30. 

12. D. F. SHANNO, "On variable metric methods for sparse Hessians," Math. Comp., v. 34, 1980, pp. 
499-514. 

13. M. N. THAPA, Optimization of Unconstrained Problems With Sparse Hessian Matrices-Newton-Type 
Methods, Technical Report SOL82-8, Stanford University, Stanford, Calif., 1982. 

14. PH. L. TOINT, "On sparse and symmetric matrix updating subject to a linear equation," Math. 
Comp., v. 31, 1977, pp. 954-961. 

15. PH. L. TOINT, Estimation of Sparse Hessian Matrices: A Block Substitution Procedure and its 
Application to the Multi-Diagonal Case, Technical Report 81/10, Dept. of Math., FUN Namur, Belgium, 
1981. 


